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Abstract. The pair-breaking effect and its impact on the properties of borocarbides is studied. The pair-
breaking effect caused by localized magnetic moments drastically affects the superconducting properties.
Interaction between the magnetic moments and the resulting ordering trend lead to a behavior entirely
different from the conventional picture. The main focus is on the behavior of the upper (Hc2) and lower
(Hc1) critical fields. In addition, the temperature dependence of several quantities (penetration depth,
coherence length, etc.) has been calculated. The theory has been applied to the borocarbide LuNi2B2C
and is in very good agreement with the recent experimental data.

PACS. 74.25.Ha Magnetic properties – 74.70.Dd Ternary, quaternary and multinary compounds (including
Chevrel phases, borocarbides etc.) – 74.62.Dh Effects of crystal defects, doping and substitution

1 Introduction

This paper is concerned with unusual properties of the
borocarbides. Borocarbides are remarkable materials in
which there is an interplay between superconductivity
and magnetism (see e.g. [1–15]). Our study was par-
ticularly motivated by recent experimental data [15] in
which unconventional temperature dependencies Hc1(T )
and Hc2(T ) for LuNi2B2C (see Fig. 1) drastically differ-
ent from those for conventional superconductors [16] have
been observed. We paid a special attention to the low tem-
perature region where the almost linear temperature de-
pendence of the critical field has been observed. Moreover,
the paper [15] contains experimental data not only onHc2,
but also on the lower critical field Hc1. It was motivated
us to develop a rigorous microscopic theory describing the
temperature dependence Hc1(T ) in a whole temperature
range (in the presence of pair-breaking as well as in the
absence of magnetic scattering), not only near Tc. This
derivation (see Sect. 2) is interesting for its own sake.

The unconventional behavior of the upper critical field
observed in the overdoped cuprates [17,18] as well as in
the YZnCuO compound [19]. We studied this problem in
our papers [20–22] and concluded that this effect is due
to magnetic scattering by pair-breakers (magnetic impu-
rities) and of their ordering trend. We have shown also
in [20] that the presence of inhomogeneities leads to un-
usual curvature of Hc2 near Tc. We expect that boro-
carbide behavior also can be described by our theory,
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although the properties and parameters of these materials
are very different from those of the cuprates. As a result,
the dependence Hc2(T ) for LuNi2B2C differs from that
observed in [17–19], but is also non-conventional. The al-
most linear temperature dependence of Hc2 is spread over
large temperature range (see below, Fig. 1). It is essential
that the borocarbides, like LuNi2B2C, contain magnetic
impurities and their presence has been observed experi-
mentally (see below, Sect. 3). In addition, we focus on the
problem of Hc1(T ); this dependence was measured for the
borocarbides in [15].

The structure of the paper is as follows. The theoreti-
cal approach is described in Section 2. An analysis of the
experimental data is given in Section 3.

2 Theory

2.1 Main equations. Upper critical field

Our approach is based on the method of integrated
Green’s functions [23,24]. We consider the “dirty”
anisotropic case. The basic equations have the following
form [25]

α∆−β̃ω+0.5D̂ij

[
α(∂−)i(∂−)j β̃−β̃

(
∂2α

∂ri∂rj

)]
=αβ̃Γ

(1a)

∆ = 2πT |λ|
∑
ωn>0

β̃, α2 + |β̃|2 = 1 (1b)

j = −ieνD̂2πT
∑
ωn>0

(β̃∗∂−β̃ − β̃∂+β̃
∗). (1c)
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Fig. 1. The upper critical magnetic field Hc2 for two orienta-
tions of the field: (•) experimental data [5], (—) theory.

Here α and β̃ are the usual and pairing Green’s functions
integrated over energy, ∆ is the order parameter, ωn =
(2n+1)πT , ∂± = (∂/∂r)±2ieA, A is the vector potential,
ν is the density of states, and λ is the coupling constant; Γ
is the magnetic scattering amplitude (Γ = τ−1

s , where τs is
the spin-flip relaxation time [26]), and D̂ij is the diffusion
coefficient tensor.

We consider a compound which is anisotropic in one
direction (this is appropriate to the borocarbides as well
as to the cuprates; the c axis is chosen to lie along this
direction). For concreteness, consider cylindrical sample
with its axis aligned with the c-direction. In this case the
tensor Dij contains two different components D‖ and D⊥.

Based on the system (1) one can obtain the following
equation describing the upper critical field Hc2 (see [20]):

ln
(
Tc

T

)
+Ψ

(
1
2

+
Γ (Tc)
2πTc

)
−Ψ

(
1
2

+
Γ (T )
2πT

+
eHc2D⊥

2πT

)
=0.

(2)

The magnetic scattering amplitude Γ is temperature de-
pendent, and this dependence is a key ingredient in our
approach. Note that according to the conventional the-
ory [26,27], Γ does not depend on the temperature, which
corresponds to the picture of independent localized mag-
netic moments. The presence of a Γ (T ) dependence which
is stated explicitly in equation (2) reflects a correlation be-
tween the magnetic moments and, consequently, the frus-
tration of spin-flip scattering as T → 0. According to [20],

the dependence Γ (T ) has a form

Γ (T ) = Γ0f(τ)
f(τ) = (1 + βτ)/(1 + τ). (3)

Here τ = T/θ, where θ is the characteristic tempera-
ture for the ordering trend of the magnetic moments.
If a magnetic transition is observed at some tempera-
ture TM, then θ = TM. For example, θ = 2 K for the
Sm1.85Ce0.15CuO4−y compound studied in [28] (this com-
pound displays an antiferromagnetic transition due to the
ordering of Sm+ ions at TM = 2 K; the superconduct-
ing transition takes place at Tc = 9.5 K). One should
stress that while the correlation between magnetic mo-
ments does not necessarily imply the existence of an order-
ing transition, the accompanying frustration will, never-
theless, result in a temperature dependence of the param-
eter Γ . For example, such is the case with the overdoped
Tl- and Bi-based cuprates. Here θ should be considered as
a parameter manifested in the behavior of the critical field.
For example, Hc2 for the Tl2B2CuO8 displays a sharp up-
turn near T ∼= 2 K [17] (a more detailed analysis [20] has
resulted in the close value θ = 1.6 K for this compound).
Another parameter which enters equation (3) is β which
reflects the relative change in the magnetic scattering am-
plitude Γ caused by correlations. Indeed, correlation be-
tween the magnetic moments frustrates the spin-flip pro-
cess, resulting in an increase in the spin-flip relaxation
time τs and in a decrease in Γ = τ−1

s . The smallest value
of the amplitude corresponds to T = 0 K; according to
equation (3), it is equal to Γ0. Let us denote by Γα the
value of Γ in the absence of the correlation effect (this
corresponds to θ = 0). Then β = Γα/Γ0 and therefore
the parameter β indeed describes the relative change in Γ
caused by correlations. This is an adjustable parameter in
our theory.

Therefore, the upper critical field is determined by
equation (2) with Γ (T ) described by equation (3). Note
that if the magnetic field is perpendicular to the c-axis,
then D⊥ should be replaced by the quantity (D⊥D‖)1/2.
The analysis of experimental data [15] will be described
below (Sect. 3).

2.2 Order parameter. Penetration depth

Let us investigate the impact of magnetic scattering and
its temperature dependence (Eq. (3)) on the major pa-
rameters of the system. We begin with the penetration
depth.

Equations (1) can be written in the form:

−
{
ρ−1∂/∂ρ(ρ∂/∂ρ)− ρ−2

}
Q =

16π2eνD⊥(ρ−1 − 2eQ)T
∑
ω>0

cos2 θ

|∆| sin θ − ω cos θ − 0.5D⊥ρ−1∂/∂ρ(ρ∂θ/∂ρ) =

0.5 sin(2θ)
(
Γ +

(
ρ−1 − 2eQ

)2)
. (4)
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We used the following notation

∆ = ∆(ρ) exp(iϕ); β = β(ρ) exp(iϕ);
β(ρ) = cos θ; α = sin θ; A = Q(ρ)eϕ; (5)

eϕ is an unit vector: eϕ = (− sinϕ; cosϕ). This no-
tation is convenient for the case of cylindrical symme-
try. Equations (4) follow after substitution of (5) into
equations (1).

It is essential that equations (1) contain the order
parameter ∆. The presence of magnetic scattering leads
to this parameter being different from the energy
gap [26,27], see below, equation (17).

For the large value of the Ginzburg-Landau (GL) pa-
rameter κ = λL/ξ (λL is the penetration depth and ξ is
the coherence length) we obtain from equation (4)

2eQ = ρ−1 − λ−1
L K1(ρ/λL) (6)

where K1 is the Bessel function, and the penetration
length λL is written as

λ−2
L = 32e2νD⊥π

2T
∑
ω>0

cos2 θ. (7)

Note also that based on equation (1b), we can obtain the
following relation:

α2δ∆ =
{

(α2 − β2)Γ + αω + β∆− D⊥
2

∂2

∂r2

}
δβ

which can be reduced to the form

2πT
∑
ω>0

{
sin2 θ

[
− Γ cos 2θ + ω sin θ

+∆ cos θ − D⊥
2ξ2

]−1

− cos θ/∆
}

= 0. (8)

Equation (8) allows us to evaluate ξ(T ). After some ma-
nipulations (see Appendix) we obtain:

2πT
∑
ω>0

{
cos2 θ(Z − cos θ + (Γ/∆) cos2 θ)

1− Z cos θ − (Γ/∆) cos3 θ

}
= 0 (9)

where Z = D⊥/2ξ2∆.
Now we can evaluate the penetration depth defined

by equation (7). Consider the limiting cases. In the low
temperature region one can replace the sum by the integral
over ω. As a result, we obtain at T → 0

λ−2
L = 16πe2νD⊥

{(π
2
− θ(Γ )

)
∆

− Γ (2/3− 3 sin θ(Γ )/4− sin(3θ(Γ ))/12)
}
. (10)

For concreteness we consider the case H ‖ c. The function
θ(Γ ) has a form:

θ(Γ ) =
{

arccos (∆/Γ ) (Γ > ∆)
0 (Γ < ∆) . (11)

It is essential that the function λL(T ) contains a linear
section near T = 0 K. This is due to the linear temperature
dependence of the amplitude Γ (Eq. (3)). The scale of
this dependence is determined by specific values of the
parameters α and β. Note that equation (10) contains
∆(T ) which determined from equation (1b) and also is
affected by the dependence Γ (T ) (see below, Sect. 3).

In the region near Tc one can use equations (7, 9) and
we arrive at the expression:

λ−2
L = (8e2νD⊥/T )|∆|2Ψ ′

(
0.5 +

Γ (T )
2πT

)
(12)

where ∆(T ) is determined by equation (1b).
The behavior of λL(T ) over the entire tempera-

ture range can be calculated numerically directly from
equation (7) (see below, Sect. 3). The presence of the func-
tion Γ (T ) may lead to a deviation from the conventional
BCS dependence.

2.3 Coherence length ξ(T). Ginzburg-Landau
parameter κ

Equation (9) along with equation (1b) can be used in or-
der to calculate ξ(T ) over the whole temperature range
(see below, Sect. 3). If T → 0, one can replace the sum
in equation (9) by an integral. Near Tc one can use the
relation

ZΨ ′
(

1
2

+
Γ

2πT

)
=

∆

2πT

∞∑
n=0

(
n+

1
2

)(
n+

1
2

+
Γ

2πT

)−4

.

(13)

If we put Γ = 0, we obtain the usual expression: Z =
7ζ(3)∆/π3T .

After evaluating the penetration depth λL and the
coherence length ξ, we can calculate the GL parameter
κ = λL/ξ. Contrary to the usual case, this parameter
turns out to be strongly temperature dependent. This de-
pendence is determined by equations (7, 9). As above,
consider the limiting cases, T → 0 and T → Tc. In ad-
dition, it is interesting to investigate the dependence κ
on n, the concentration of the localized magnetic mo-
ments. For example, at T = 0, κ2 ∼= 1.5(8π2e2νD2

⊥)−1

if Γ = 0, and κ2 = (48π2e2νD2
⊥)−1 if Γ � ∆, so that

κ(Γ = 0)/κ(Γ � ∆)|T = 0 K = 1.7.
Near Tc the parameter κ is described by the following

equation which directly follows from equations (10, 13):

κ2 = −(16πe2νD⊥)−1

[
Ψ ′′
(

1
2

+
Γ

2πT

)
+

Γ

6πT
Ψ ′′′

(
1
2

+
Γ

2πT

)][
Ψ ′
(

1
2

+
Γ

2πT

)]−2

.

As a result, we obtain κ(Γ = 0)/κ(Γ � Tc) = 0.48.
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As was noted above, the dependence κ(T ) over the
whole temperature range follows from equations (7, 9) (see
below, Sect. 3)

2.4 Critical field Hc1

We now turn to the analysis of the dependence of Hc1 on
T . This problem requires an additional effort. Indeed, it
has been possible to evaluate the dependence Hc2(T ) over
the whole temperature range [16] because the order pa-
rameter is always small near Hc2. The situation with Hc1

is different, and the rigorous derivation exists only near
Tc and is based on the Ginzburg-Landau equations, al-
though there are some qualitative estimates (see, e.g. [29]).
Nevertheless, one can show (see below) that, based on
equation (1), one can obtain a rigorous expression for
Hc1(T ) valid over a broad temperature region in the limit
of large κ = λL/ξ. This is precisely the case for the boro-
carbides (see Sect. 3). We will start with this evaluation,
which is interesting in its own right.

In order to evaluate the low critical field Hc1 it is nec-
essary to calculate the energy of single vortex. Let us write
the expression for the free energy:

F S − FN = ν

∫
dr

{
|λ|−1|∆|2 − 2πT

∑
ω>0

G

}

+
1

8π

∫
dr
[
(rot A)2 − 2H0 rot A

]
(14)

where

δG/δ|∆| = 2 cos θ. (14’)

This is a general form of a free energy functional which
leads to equations (1).

Based on equation (14), one can write the following
expression which determines Hc1:

(Hc1/4π)φ = δF̃ ;

δF̃ =
1
4

∫ ∞
0

dρ ρH2(ρ) + 2πν
∫ ∞

0

dρ ρδ{G}.
(15)

Here φ = π/e is the flux quantum, and δ{G} is the en-
ergy difference given by the first term in equation (14)
and caused by an appearance of an isolated vortex. This
quantity can be calculated (see Appendix) and we arrive
at the expression:

(Hc1/4π)φ = (16e2λ2
L)−1[ln(λL/ξ) + χ]. (16)

Here χ = −C + ln 2 + γ1, C is the Euler constant, and
γ1 ≤ 1. Near Tc we obtain χ = 0.146.

3 Experimental data: Discussion

The paper [15] contains a detailed experimental study of
the borocarbide, LuNi2B2C. As was mentioned above, the

measured upper and low critical fields display an unusual
temperature dependence (see Figs. 1 and 4) drastically
different from that of conventional superconductors. It is
possible to show that the observed behavior can be ex-
plained by the magnetic scattering of correlated localized
magnetic moments.

Let us note, at first, that the presence of localized mag-
netic moments in LuNi2B2C has been established experi-
mentally in [9,5]. In addition, the authors of [5] explicitly
separated the contribution to the magnetic susceptibility
in YNi2B2C caused by magnetic impurities.

Let us start with Hc2. The paper [15] contains data for
longitudinal (H ‖ c) and transverse (H ⊥ c) upper critical
fields for LuNi2B2C. Similar data were reported in [7]. The
paper [15] contains also data for Hc1(T ). Note also that
the unusual dependence Hc2(T ) for some borocarbides,
e.g. for YNi2B2C compound (for T > 4 K), was observed
in [7,10,14]. In this paper we analyze data for LuNi2B2C.

The temperature dependence of the critical fields can
be evaluated with the use of equations (2, 16). The strong
deviation of Hc2(T ) from the conventional dependence is
due to the temperature dependence of the magnetic am-
plitude Γ (T ) (see Eq. (3)). Let us consider the case H ‖ c;
first we can use the measured dependence Hc2(T ) in order
to determine the major parameters. The parameters are
θ = 33 K, β = 5.1, eD‖ = 1.45 K/T. Furthermore, we find
that Γ0 = 9 K. It is interesting to note that, contrary to
the cuprates (see [20]), the value of θ is larger than Tc. We
think that this factor leads to the dependence Hc2(T ) for
LuNi2B2C (Fig. 1) being so different from those for the
cuprates [17–19].

We now use the same values of β, θ and Γ0 to evaluate
Hc2 for the case H ⊥ c. In order to obtain the theoretical
curve, we need just one additional parameterD⊥; its value
is eD⊥ = 2.5 K/T. Again, one finds very good agreement
with the data [15] (see Fig. 1).

Note that we focus mainly on the intermediate and
low temperature region. As for the upward curvature near
Tc, it can be affected, in addition to magnetic scattering
(see the theoretical curve, Fig. 1), by inhomogeneity of the
structure. Its impact is a two-fold. First of all, the presence
of inhomogeneities directly affect the dependence Hc2(T ),
see [20,21], and, in addition, it leads to smearing of the
transition. As a result, the exact shape of the dependence
Hc2(T ) near Tc is sensitive to the choice of the value of Tc

(see discussion in [20]).
The paper [15] contains also the data on the low crit-

ical field Hc1. We discuss these data below. The depen-
dence Hc1(T ) is determined (see Eq. (16)) by the tem-
perature dependence of the parameter κ. Because of it,
as the first step, we evaluate the temperature dependence
of the order parameter ∆(T ), the dependence λL(T ), the
coherence length ξ(T ), and the GL parameter κ(T ) over
the full temperature range. The calculation makes use of
equations (1b, 7, 9). The results are presented in Figures 2
and 3. Clearly the dependence ∆(T ) is very different from
the usual BCS curve. This is due to the temperature de-
pendence of Γ .
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Fig. 2. Temperature dependence ∆(T ) for LuNi2B2C;
β = ∆/Tc.

Note that the value ∆(0)/Tc appears to be much larger
than that for the usual superconductors. This is caused by
the effective decrease in the scattering amplitude Γ (T ) as
T → 0 K. This leads to an effective increase in the pairing
(“recovery” effect, cf. [20]), and, correspondingly, to an
increase in ∆(0).

As was mentioned above (see Sect. 2) the function
∆(T ) is the order parameter, not the energy gap. For
the usual BCS system ∆(T ) is equal to the energy gap
ε0, but this is not the case for the pair-breaking sce-
nario. In presence of magnetic impurities one can use the
relation [26,27]:

ε0(T ) = ∆[1− (Γ/∆)2/3]3/2 (17)

and, therefore, ε0 < ∆. Using the dependence ∆(T )
(Fig. 2) and equations (3, 17), one can obtain the depen-
dence ε0(T ) and the value ε0(0)/Tc. Using the correspond-
ing parameters for LuNi2B2C, we obtain 2ε0(0)/Tc = 4.4.
It is very essential that the order parameter ∆ and, es-
pecially, the energy gap ε0 strongly depend on temper-
ature, even in the low temperature region. Indeed, the
dependence ε0(T ) is affected by the temperature depen-
dence of ∆ (see Fig. 2) and by the dependence Γ (T )
(see Eq. (3)). As a result, the comparison with experi-
mental data should be carried out with considerable care.
For example, the measurements in [13] were performed at
T = 4.2 K. With use of equations (3, 7) and Figure 2, one
can obtain ε0(4.2 K) = 3.2Tc, in a very good agreement
with the data [13], see also [30], and the review [12]. It
would be interesting to perform the measurements of the
energy gap ε0 for various temperatures in the low temper-
ature region, since the dependence ε0(T ) is different from
that for conventional superconductors.

Based on equation (7), one can calculate the depen-
dence λL(T ). Unlike the critical field (see above and
Fig. 1), it turns out that the dependence λL(T ) for
LuNi2B2C does not differ noticeable from the usual BCS
dependence (except a small linear slope as T → 0 K). It

Fig. 3. Temperature dependence of the GL parameter κ.

Fig. 4. The low critical field Hc1: (•) experimental data [15]
for LuNi2B2C.

is interesting to note that the paper [11] contains a high
quality data on λL for YNi2B2C and the measurements
show a good agreement with the BCS function λL(T ). The
calculation of the penetration depth for YNi2B2C based
on our model will be presented elsewhere.

Figure 3 contains the calculated parameter k(T ) which
displays a strong temperature dependence.

It is important to emphasize that the calculation of
∆(T ), λL(T ), and κ(T ) invokes no additional parameters,
but only values obtained from the calculation of Hc2(T )
above.

Let us finally discuss the dependence Hc1(T ). The
measurements were carried out for H ‖ c. The calcula-
tion is based on equations (7, 12, 16), and the results are
presented in Figure 4. One should note that we analyze



208 The European Physical Journal B

the experimental data in the region 5 K < T < Tc, where
the term γ2 (see Eq. (16)) is small. The function γ2(T ),
probably, increases up to γ2

∼= 1 as T → 0. The corre-
sponding analysis will be described elsewhere. As for the
intermediate temperatures and the region near Tc, one can
see a good agreement between the theory (Eqs. (7, 12, 16))
and the data [15].

4 Conclusion

In this paper we focus on various properties of a new and
interesting family of superconducting materials, borocar-
bides. The main results can be summarized as follows:

i) Based on the method of integrated Greens function,
one can derive an expression for the upper critical field
in the presence of magnetic scattering (Eq. (2)). In-
teraction between the magnetic moments makes the
magnetic amplitude temperature dependent.

ii) We derived the expressions describing the full-range
temperature dependencies of the order parameter
∆(T, Γ ), the penetration depth (Eqs. (7, 10, 12)), the
coherence length ξ(T ) (Eq. (9)), and the GL param-
eter κ(T ) (Eqs. (7, 9) and Figs. 2 and 3). The form
of these dependencies in borocarbides is very different
from that in conventional superconductors.

iii) A general expression describing the low critical field
Hc1 has been obtained (Eq. (16)).

iv) A detailed comparison with the data [15] on Hc2 and
Hc1 for LuNi2B2C has been carried out. The theory is
in a very good agreement with the experimental data
(Figs. 1 and 4).

The authors are grateful to G. Schmiedeshoff and W.
Beyermann for valuable discussions and sending to us the
manuscript [15] prior to its publication. The research of YNO
is supported by the CRDF Grant RP1-194. The research of
VZK is supported by the US Office of Naval Research under
Contract #N00014-98-F0006.

Appendix

i) In order to modify equation (8), it is useful to use the
substitution: ω = ∆ tg θ−Γ sin θ. Then we arrive at equa-
tion (9). Note that near Tc, θ = (π/2)−∆(ω+Γ )−1. Then
we obtain the relation

2πT
∑
ω>0

(ω + Γ )−2[Z −∆ω(ω + Γ )−2] = 0 (A.1)

which leads to equation (13).

ii) Let us calculate the quantity δG. Based on
equations (12, 14’), we obtain

δG = 4π2νD⊥

∫ ∞
R

dρ ρK2
1 (ρ/λ)λ−2

L T

×
∑
ω>0

∫ |∆|
0

d|∆| sin2 θS−1

+ 0.25
∫ ∞

0

dρ ρ−1(∂/∂ρ(ρQ))2 + ε̃(R)

S = |∆| cos−2 θ − Γ cos θ (A.2)

where ξ � R� λL.
The energy ε̃(R) is equal to:

ε̃(R) = 2πν
∫ R

0

dρ ρ
∫

dT 0
c /T

0
c (|∆2

∞|2 − |∆(ρ)|2). (A.3)

Here ∆∞ is the order parameter in the absence of the
vortex and magnetic scattering. The energy ε̃(R) can be
written in the form:

ε̃(R) = (16e2λ2)−1[ln(R/ξ) + γ1] (A.4)

where γ ≤ 1. Evaluating the integral (A.2) (with use of
substitution Sdθ = −tg θd|∆|, we arrive at equation (16).
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